Spin-2 KK Mode Scattering in the Truncated RS1

Dennis Foren (he/they) June 4th, 2020

MICHIGAN STATE UNIVERSITY

UC San Diego

Jun 4th, 2020

Late 2018

Dark Matter: Freeze-Out, Portal Models

Any dark matter (DM) model should predict *at most* as much dark matter as measured.

• Freeze-Out Model:

DM is in thermal equilibrium until it gets too cold & disperse to annihilate anymore; particle number becomes constant.

Portal Models:

Eliminate a lot of DM quickly before freeze-out by going on resonance.

Motivating a Massive Spin-2 Portal

 $\Lambda_{\rm strong} \sim M_{\rm Pl}$ L Usual 4D Spacetime

Motivating a Massive Spin-2 Portal

Randall-Sundrum 1

...aka a section of AdS5 ...aka the model this whole talk is about

y =
$$\varphi r_c$$

TeV Brane ($\varphi = \pi$)
Bulk
Planck Brane ($\varphi = 0$)

Motivating a Massive Spin-2 Portal

Randall-Sundrum 1

$$\Lambda_{strong} \sim \Lambda_{\pi} \equiv M_{Pl} e^{-\pi k r_c}$$

y = φr_c
TeV Brane ($\varphi = \pi$)
Bulk
Planck Brane ($\varphi = 0$)

RS1 \rightarrow Many Massive Spin-2 Portals

Countably infinite portals!

Practical: truncate to 1st ~five states

A Myste rious Region? $\Lambda_{\pi} \equiv M_{\text{Pl}} e^{-\pi k r_c}$

Jun 4th, 2020

7 of 94

A Mysterious Region? $\Lambda_{\pi} \equiv M_{\rm Pl} e^{-\pi k r_c}$

A Mysterious Region? $\Lambda_{\pi} \equiv M_{\rm Pl} e^{-\pi k r_c}$

A Mysterious Region? $\Lambda_{\pi} \equiv M_{\text{Pl}} e^{-\pi k r_c}$ Relic Density at Λ_{π} = 200.0 TeV, x_f = 15.0 Key 5000 Allowed Unitarity Dark Matter Mass (GeV) **Dark Matter** Violated 4000 Overabundant (E > 10 m1)3000 $a^{J} = \frac{1}{32\pi^{2}} \int d\Omega \quad D^{J}_{\lambda_{i}\lambda_{f}}(\theta,\phi)\mathcal{M}(s,\theta,\phi)$ 2000 $1 - \frac{s_{\min}}{s} \ \Re[a^J] \le \frac{1}{2}$ 1000 Theory $\Omega h^2 \leq Experiment \Omega h^2$ 1000 2000 3000 4000 5000 1st Spin-2 KK Mode Mass (GeV) 10 of 94

Jun 4th, 2020

A Mysterious Region? $\Lambda_{\pi} \equiv M_{\text{Pl}} e^{-\pi k r_c}$ Relic Density at Λ_{π} = 200.0 TeV, x_f = 15.0 Key 5000 Allowed Unitarity Dark Matter Mass (GeV) **Dark Matter** Violated 4000 Overabundant (E > 10 m1) $s_{\rm DM}$ 3000 \mathcal{N} $\sim \mathcal{O}(s^3)$ 2000 s_{DM} \mathcal{N} 1000 Theory $\Omega h^2 \leq Experiment \Omega h^2$ 2000 1000 3000 4000 5000 1st Spin-2 KK Mode Mass (GeV) Jun 4th, 2020 11 of 94

Present Day

On the work I'm presenting today

My Collaborators at MSU & UCSD:

R. Sekhar Chivukula Kirtimaan A. MohanDipan Sengupta Elizabeth H. Simmons

Our Relevant Papers:

- "Sum Rules for Massive Spin-2 Kaluza-Klein Elastic Scattering Amplitudes" [arXiv:1910.06159], Phys. Rev. D 100, 115033
- "Scattering Amplitudes of Massive Spin-2 Kaluza-Klein States Grow Only as O(s)" [arXiv:1906.11098], Phys. Rev. D 101, 055013
- "Massive Spin-2 Scattering Amplitudes in Extra-Dimensional Theories" [arXiv: 2002.12458], Phys. Rev. D 101, 075013

Extra-Dimensional Gravity Models (ONLY gravity; no matter)

Jun 4th, 2020

D. Foren – FNAL Seminar

15 of 94

$$g_{\mu\nu} = \eta_{\mu\nu} + \underbrace{\frac{2}{M_{\rm Pl}} h_{\mu\nu}^{(0)}}_{\text{disturbance}}$$

M_{Pl} = the reduced Planck mass

 $ds^2 = g_{\mu\nu} \, dx^\mu \, dx^i$

Jun 4th, 2020

 $\hat{h}^{(0)}_{\mu\nu} = 4D$ massless spin-2 field \equiv the "4D graviton" field

Jun 4th, 2020

2-to-2 Scattering in 4D Gravity (4DG)

WFE = <u>Weak Field Expansion</u>

A perturbative expansion of the gravitational Lagrangian by assuming the curved metric is very close to a "background metric" (= a classical solution of the Einstein Field equations).

$$g_{\mu\nu}(x) = \eta_{\mu\nu} + \frac{2}{M_{\rm Pl}} \hat{h}^{(0)}_{\mu\nu}(x)$$

2-to-2 Scattering in 4DG

2-to-2 Scattering in 4DG

$$\mathcal{M} = \frac{\lambda_1 0 \mathcal{I}_2}{\lambda_2 0 \mathcal{I}_2} \frac{\lambda_1 0 \mathcal{I}_3}{\lambda_2 0 \mathcal{I}_3} \propto \left[\left(\frac{E}{M_{\rm Pl}} \right)^2 \right]$$

2⁴ = 16 helicity combos

Could anticipate this, because...

- **M**_{Pl} is only dimensionful parameter.
- Two instances of coupling present.
- This matrix element is dimensionless.

$$\eta_{MN} = \begin{pmatrix} + & 0 & 0 & 0 & 0 \\ 0 & - & 0 & 0 & 0 \\ 0 & 0 & - & 0 & 0 \\ 0 & 0 & 0 & - & 0 \\ 0 & 0 & 0 & 0 & - \end{pmatrix}$$

Add extra dimension, length πr_c $r_c = compactification radius$

Jun 4th, 2020

r_c = compactification radius

Nearly Flat Spacetime $G_{MN} = \eta_{MN} + \underbrace{\kappa \,\hat{h}_{MN}}_{}$ disturbance **κ** = 5D coupling strength and has units [E]-3/2 $ds^2 = G_{MN} \, dx^M \, dx^N$

Jun 4th, 2020

r_c = compactification radius

Nearly Flat Spacetime $G_{MN} = \eta_{MN} + \kappa h_{MN}$ disturbance **κ** = 5D coupling strength and has units [E]-3/2 $ds^2 = G_{MN} \, dx^M \, dx^N$

 $\hat{h}_{MN} \equiv$ the "5D graviton" field

Jun 4th, 2020

23 of 94

Kaluza-Klein Decomposition: What is it?

... but what if we did the calculation in 4D instead? Consider:

Kaluza-Klein Decomposition

- Introduced to unify Gravity + E&M (cool idea, didn't work)
- Sometimes called "mode expansion."
- Like a fancier version of Fourier decomposition.

** IMPORTANT **

The following is moreso a mnemonic. Many details have been omitted. (e.g. the warping in RS1)

Kaluza-Klein Decomposition: What is it?

$$G_{MN} = \eta_{MN} + h_{MN}$$

5D Lorentz transformations contain **4D Lorentz transformations**

$$\frac{\text{Caution:}}{h_{\mu\nu}} = h_{\mu\nu}(x, y)$$

KK Decomposition: vs Fourier Decomposition

1 continuous variable

$$f(y) = \frac{1}{\sqrt{L}} \sum_{n=0}^{+\infty} f^{(n)} \psi_n(\varphi)$$

Boundary Condition

KK Decomposition: $5D \rightarrow 4D$

$$\begin{aligned} f(x,y) &\sim f^{(n)}(x) \,\psi_n(\varphi) \\ \begin{cases} \Box_{5\mathrm{D}} f = 0 \\ \Box_{4\mathrm{D}} f^{(n)} &= -m_n^2 f^{(n)} \end{aligned}$$

$$\partial_{\varphi}^2 \psi_n = -(m_n r_c)^2 \psi_n$$

Differential Equation (again: RS1 more complicated)

1 continuous variable

$$f(x,y) = \frac{1}{\sqrt{L}} \sum_{n=0}^{+\infty} f^{(n)}(x) \psi_n(\varphi)$$

1 discrete index

KK Decomposition: $5D \rightarrow 4D$

$$\begin{aligned} f(x,y) \sim f^{(n)}(x) \,\psi_n(\varphi) \\ \begin{cases} \Box_{5\mathrm{D}} f = 0 \\ \Box_{4\mathrm{D}} f^{(n)} = -m_n^2 f^{(n)} \end{aligned}$$

$$\partial_{\varphi}^2 \psi_n = -(m_n r_c)^2 \psi_n$$

Differential Equation (again: RS1 more complicated)

1 continuous variable

$$f(x,y) = \frac{1}{\sqrt{L}}$$

KK Index = n

mass = m_n

 $f^{(n)}(x)$

 (φ)

1 discrete index

Jun 4th, 2020

KK Decomposition: $5D \rightarrow 4D$

$$f(x,y) \sim f^{(n)}(x) \psi_n(\varphi)$$
$$\begin{cases} \Box_{5\mathrm{D}} f = 0\\ \Box_{4\mathrm{D}} f^{(n)} = -m_n^2 f^{(n)} \end{cases}$$

$$\partial_{\varphi}^2 \psi_n = -(m_n r_c)^2 \psi_n$$

Differential Equation (again: RS1 more complicated)

1 continuous variable $f(x,y) = \frac{1}{\sqrt{L}} \sum_{n=0}^{+\infty} f^{(n)} \frac{\text{Wavefxn}}{\psi_n(\varphi)}$ $\psi_n(\varphi)$ KK Index = n

KK Decomposition: Apply to 5D Graviton

Jun 4th, 2020

KK Decomposition: 5D Graviton \rightarrow 4D Particles

Jun 4th, 2020

KK Deco

Jun 4th, 2020

KK Decomposition: 5D Graviton \rightarrow 4D Particles

Jun 4th, 2020

KK Decomposition: 5D Graviton \rightarrow 4D Particles

Jun 4th, 2020

D. Foren – FNAL Seminar

Kaluza-Klein Decomposition: 5D restricts 4D

High-Energy 5D Behavior

 $\sum^{\kappa} h \overline{\lambda}_{3} \sim (\kappa^{2} E^{2})$ $\overline{\lambda}_1 h_{x_{x_y}}$ $\overline{\lambda}_{2}h$ ^δxhλ

Jun 4th, 2020

42 of 94

Kaluza-Klein Decomposition: A Lead?

 \hat{h}_{MN} $\hat{h}^{(0)}_{\mu
u}$ $\hat{r}^{(0)}$ $\hat{h}^{(2)}_{\mu
u}$ $\hat{h}^{(1)}_{\mu
u}$. ቀ2 ታ2 - 2 & & & ቀ1 \bigcirc 0 -1 -2 -2 n = 2 n = 1 **5D Graviton** Radion 4D Graviton KK Mode **KK Mode** High-Energy 4D Behavior High-Energy 5D Behavior $\overline{\lambda}_1 h_{\infty}$ $\sim (\kappa^2 E^2)$ $\lambda_1 n_1 x_2$ $\overline{\lambda}_{2}h$ ^δxhλ $\lambda_2 n_2 \nabla$ **%n∧** 43 of 94

Jun 4th, 2020

D. Foren – FNAL Seminar

The Plan

We examine how this constraint impacts the
 5D Randall-Sundrum (RS1) model, which
 possesses warping in the extra dimension.

 We perform the full calculation, i.e. without approximations. No "large warping" limit here!

By demanding all energy growth faster than
 O(s) to vanish, we derive sum rules relating
 couplings & masses between KK modes
 (... and then prove most!)

The Randall-Sundrum "RS1" Model

The Original RS Papers: [arXiv:hep-ph/9905221 and 9906064]

Previous Slide

N/A

 $\eta_{\mu\nu} = \begin{pmatrix} +1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$

 $\varepsilon^{-2} \eta_{\mu\nu}$ $\varepsilon \equiv e^{+kr_c|\varphi|}$

- **k** = warping parameter
- **k** = **0**: flat extra dimension
- **k > 0:** needs brane tensions, cosmological constant

Previous Slide

The RS1 Metric & Field Content

$$\eta_{MN}^{(\mathrm{RS})} \stackrel{\mathrm{perturb}}{\longrightarrow} G_{MN}^{(\mathrm{RS})} = \begin{pmatrix} \varepsilon^{-2} g_{\mu\nu} e^{-2\hat{u}} & 0\\ 0 & -(1+2\hat{u})^2 \end{pmatrix}$$

where

$$g_{\mu\nu} \equiv \eta_{\mu\nu} + \kappa \hat{h}_{\mu\nu}$$
 and

$$\hat{u} \equiv \frac{\kappa}{2\sqrt{6}} \left[\varepsilon^{+2} e^{-\pi k r_c} \hat{r} \right]$$

 $\hat{h}_{\mu\nu}(x,y) = \text{massless 5D spin-2}$

 $\hat{r}(x) = \text{massless 5D spin-0} \text{ (note it's y-independent!)}$

Building RS1: Kaluza-Klein (KK) Decomposition

$$\frac{\hat{r}(x)}{\sqrt{\pi r_c}} \frac{\hat{r}^{(0)}(x)}{\sqrt{\psi_0}}$$

= (radion)

$$\underline{\hat{h}}_{\mu\nu}(x,y) = \frac{1}{\sqrt{\pi r_c}} \sum_{n=0}^{+\infty} \underline{\hat{h}}_{\mu\nu}^{(n)}(x) \, \underline{\psi}_n(\varphi)$$

- = (4D graviton) + (massive 4D spin-2 KK modes)
- The wavefunctions ψ_n solve a specific
 Sturm-Liouville Equation (S-L Eq.)

The solution set { ψ_n } and spectrum { m_nr_c } are <u>entirely determined by kr_c</u>.

Reparameterize: $(k, r_c, \kappa) \rightarrow (kr_c, m_1, M_{PI})$

$$kr_{c} = k \cdot r_{c}$$

$$m_{1} \equiv \frac{1}{r_{c}} \left[(m_{1}r_{c}) \big|_{kr_{c}} \right] \text{ via S-L Eq.}$$

$$M_{\text{Pl}} \equiv \frac{2}{\kappa\sqrt{k}} \sqrt{1 - e^{-2kr_{c}\pi}}$$

For the remainder of this presentation, whenever I show *numerical* plots, I set:

$$M_{\rm Pl} = 2.435 \times 10^{15} {
m TeV}$$

 $m_1 = 1 {
m TeV}$

$$\mathcal{L}_{5\mathrm{D}} = \mathcal{L}_{\mathrm{EH}} + \mathcal{L}_{\mathrm{CC}} \quad \stackrel{\mathsf{WFE}}{\underset{\mathsf{\& KK}}{\longrightarrow}} \quad \mathcal{L}_{4\mathrm{D}}^{(\mathrm{eff})} \equiv \int dy \quad \mathcal{L}_{5\mathrm{D}}$$

D. Foren – FNAL Seminar

Example: KK Mode Interactions (& Couplings)

Example: Cubic KK Mode Interaction

Example: Quartic KK Mode Interaction

Example: (KK Mode)² - Radion Interaction

A-Type forbidden by 4D diffeomorphism invariance

Matrix Element: Total Matrix Element

 $\mathcal{M}_{\text{full}} = \frac{\lambda_1 \mathbf{n}_1 \mathbf{n}_2 \mathbf{n}_3 \lambda_3}{\lambda_2 \mathbf{n}_2 \mathbf{n}_2 \mathbf{n}_4 \lambda_4} = \mathcal{M}_c + \mathcal{M}_r + \sum_{j=0}^{+\infty} \mathcal{M}_j$ i=0

Jun 4th, 2020

D. Foren – FNAL Seminar

58 of 94

Matrix Element: Truncated Matrix Element

 $\mathcal{M}^{[N]} \equiv \mathcal{M}_c + \mathcal{M}_r + \sum$

Matrix Element: Expanded Matrix Element

$$\mathcal{M}^{[N]} \equiv \sum_{\sigma} \underline{\mathcal{M}^{[N](\sigma)}} \equiv \sum_{\sigma} \overline{\mathcal{M}^{[N](\sigma)}} (Er_c)^{\underline{2\sigma}} \qquad \stackrel{-}{\underset{N}{\overset{N}{\underset{(\alpha)}{\overset{(\alpha)$$

From 5D Theory: $\mathcal{M}^{[N](\sigma)}$ vanishes as $N \to \infty$ for all $\sigma > 1$ (i.e. growth $> E^2$)

Jun 4th, 2020

D. Foren – FNAL Seminar

60 of 94

Some Obstacles

- Weak Field Expansion is algebraically complicated and computationally intensive (many indices, thousands of terms)
- The resulting **4D Interactions** are long even before KK decomposition.
- Couplings involve integrating products of highly-oscillatory wavefunctions (numerically unstable) but require high precision for evidence of cancellations.

 $\mathcal{I}_{A:hhhh} = \frac{1}{4} \hat{h} \hat{h}_{\mu\nu} \hat{h}_{\rho\sigma} (\partial^{\mu} \partial^{\nu} \hat{h}^{\rho\sigma}) - \hat{h}_{\mu\nu} \hat{h}_{\rho\sigma} \hat{h}^{\sigma\tau} (\partial^{\mu} \partial^{\nu} \hat{h}^{\rho}_{\tau})$ $-\frac{3}{4}\hat{h}_{\mu\nu}\hat{h}_{\rho\sigma}(\partial^{\mu}\hat{h}^{\rho\sigma})(\partial^{\nu}\hat{h})+\hat{h}_{\mu\nu}\hat{h}_{\rho\sigma}\hat{h}^{\sigma\tau}(\partial^{\mu}\partial^{\rho}\hat{h}^{\nu}_{\tau})$ $-\frac{1}{4} [\hat{h}\hat{h}] \hat{h}_{\mu\nu} (\partial^{\mu}\partial_{\rho}\hat{h}^{\rho\nu}) - \hat{h}_{\mu\nu}\hat{h}_{\rho\sigma} (\partial^{\mu}\hat{h}^{\rho\tau}) (\partial^{\nu}\hat{h}^{\sigma}_{\tau})$ $+ \hat{h}_{\mu\nu}\hat{h}_{\rho\sigma}(\partial^{\mu}\hat{h}^{\nu\tau})(\partial^{\rho}\hat{h}^{\sigma}_{\tau}) + \frac{1}{8}\hat{h}^{2}\hat{h}_{\mu\nu}(\partial^{\mu}\partial_{\rho}\hat{h}^{\rho\nu})$ $-\frac{1}{8}\hat{h}^{2}\hat{h}^{\mu\nu}(\partial^{\mu}\partial^{\nu}\hat{h})-\frac{1}{2}\hat{h}_{\mu\nu}\hat{h}_{\rho\sigma}(\partial^{\mu}\hat{h}^{\nu\tau})(\partial_{\tau}\hat{h}^{\rho\sigma})$ $+ \hat{h}_{\mu\nu}\hat{h}_{\rho\sigma}(\partial_{\tau}\hat{h}^{\tau\rho})(\partial^{\mu}\hat{h}^{\nu\sigma}) + \frac{1}{4}\hat{h}\hat{h}_{\mu\nu}(\partial^{\mu}\hat{h}^{\nu\rho})(\partial_{\rho}\hat{h})$ $- \hat{h}_{\mu\nu}\hat{h}_{\rho\sigma}\hat{h}^{\mu\rho}(\partial^{\nu}\partial^{\sigma}\hat{h}) + \hat{h}_{\mu\nu}\hat{h}_{\rho\sigma}\hat{h}^{\mu\rho}(\partial^{\nu}\partial_{\tau}\hat{h}^{\tau\sigma})$ $-\hat{h}_{\mu\nu}\hat{h}_{\rho\sigma}(\partial^{\mu}\hat{h}^{\rho\tau})(\partial_{\tau}\hat{h}^{\nu\sigma}) + \frac{1}{2}\hat{h}\hat{h}_{\mu\nu}\hat{h}^{\nu\rho}(\partial^{\mu}\partial_{\rho}\hat{h})$ $-\frac{1}{2}\hat{h}\hat{h}_{\mu\nu}\hat{h}^{\nu\rho}(\partial^{\mu}\partial^{\sigma}\hat{h}_{\sigma\rho})+\frac{1}{2}\hat{h}\hat{h}_{\mu\nu}(\partial^{\mu}\hat{h}_{\rho\sigma})(\partial^{\rho}\hat{h}^{\nu\sigma})$ $-\hat{h}_{\mu\nu}\hat{h}_{\rho\sigma}(\partial^{\mu}\hat{h}^{\rho\tau})(\partial^{\sigma}\hat{h}^{\nu}_{\tau})-\hat{h}_{\mu\nu}\hat{h}^{\nu\rho}\hat{h}_{\sigma\tau}(\partial^{\mu}\partial_{\rho}\hat{h}^{\sigma\tau})$ $-\frac{1}{2}\hat{h}_{\mu\nu}\hat{h}^{\nu\rho}(\partial^{\mu}\hat{h}_{\sigma\tau})(\partial_{\rho}\hat{h}^{\sigma\tau})+\hat{h}\hat{h}_{\mu\nu}\hat{h}^{\nu\rho}(\Box\hat{h}_{\rho}^{\mu})$ $+\frac{1}{8} [\hat{h}\hat{h}] \hat{h}_{\mu\nu}(\Box \hat{h}^{\mu\nu}) - \frac{1}{4} \hat{h}_{\mu\nu} \hat{h}_{\rho\sigma}(\partial^{\tau} \hat{h}^{\mu\nu})(\partial_{\tau} \hat{h}^{\rho\sigma})$ $-\frac{1}{16}\hat{h}^{2}\hat{h}_{\mu\nu}(\Box\hat{h}^{\mu\nu}) + \frac{1}{8}\hat{h}\hat{h}_{\mu\nu}(\partial^{\sigma}\hat{h}^{\mu\nu})(\partial_{\sigma}\hat{h})$ $-\frac{1}{2}\hat{h}_{\mu\nu}\hat{h}_{\rho\sigma}\hat{h}^{\mu\rho}(\Box\hat{h}^{\nu\sigma})-\frac{1}{2}\hat{h}_{\mu\nu}\hat{h}^{\nu\rho}(\partial^{\mu}\hat{h}_{\rho\sigma})(\partial^{\sigma}\hat{h})$ $+\frac{3}{2}\hat{h}\hat{h}_{\mu\nu}(\partial_{\rho}\hat{h}^{\mu\sigma})(\partial^{\rho}\hat{h}^{\nu}_{\sigma})+\frac{1}{48}\hat{h}^{3}(\Box\hat{h})$ $+\frac{1}{4}\hat{h}\hat{h}_{\mu\nu}(\partial^{\rho}\hat{h}_{\rho\sigma})(\partial^{\sigma}\hat{h}^{\mu\nu})+\frac{1}{4}\hat{h}[\![\hat{h}\hat{h}]\!](\partial^{\mu}\partial^{\nu}\hat{h}_{\mu\nu})$ $-\frac{1}{8}\hat{h}\llbracket\hat{h}\hat{h}\rrbracket(\Box\hat{h})$. $\overline{\mathcal{L}}_{B:hhhh} = \frac{1}{2} [\![\hat{h}\hat{h}']\!]^2 - \frac{1}{2} \hat{h} [\![\hat{h}']\!] [\![\hat{h}\hat{h}']\!] - \frac{1}{2} [\![\hat{h}\hat{h}'\hat{h}\hat{h}']\!]$ $+\frac{1}{2}\hat{h}[[\hat{h}\hat{h}'\hat{h}']]+[[\hat{h}']][[\hat{h}\hat{h}\hat{h}']]-[[\hat{h}\hat{h}\hat{h}'\hat{h}']]$ $+ \frac{1}{8} [\![\hat{h}\hat{h}]\!] [\![\hat{h}'\hat{h}']\!] - \frac{1}{8} [\![\hat{h}\hat{h}]\!] [\![\hat{h}']\!]^2 - \frac{1}{16} \hat{h}^2 [\![\hat{h}'\hat{h}']\!]$ $+\frac{1}{16}\hat{h}^2[[\hat{h}']]^2$,

If 4D is trouble, why do it?

- The calculations relevant to experimental quantities rely on the 4D particle content, e.g. matrix elements and cross-sections.
- Although the 4D theory must be consistent with the 5D theory, how that is achieved is not obvious: nontrivial relationships b/w KK mode masses, couplings.
- Facilitates better understanding of how to efficiently calculate quantities involving massive spin-2 particles (and the development of automated tools!)

 $\overline{\mathcal{L}}_{A:hhhh} = \frac{1}{4} \hat{h} \hat{h}_{\mu\nu} \hat{h}_{\rho\sigma} (\partial^{\mu} \partial^{\nu} \hat{h}^{\rho\sigma}) - \hat{h}_{\mu\nu} \hat{h}_{\rho\sigma} \hat{h}^{\sigma\tau} (\partial^{\mu} \partial^{\nu} \hat{h}^{\rho}_{\tau})$ $-\frac{3}{4}\hat{h}_{\mu\nu}\hat{h}_{\rho\sigma}(\partial^{\mu}\hat{h}^{\rho\sigma})(\partial^{\nu}\hat{h})+\hat{h}_{\mu\nu}\hat{h}_{\rho\sigma}\hat{h}^{\sigma\tau}(\partial^{\mu}\partial^{\rho}\hat{h}^{\nu}_{\tau})$ $-\frac{1}{4} [\hat{h}\hat{h}] \hat{h}_{\mu\nu} (\partial^{\mu}\partial_{\rho}\hat{h}^{\rho\nu}) - \hat{h}_{\mu\nu}\hat{h}_{\rho\sigma} (\partial^{\mu}\hat{h}^{\rho\tau}) (\partial^{\nu}\hat{h}^{\sigma}_{\tau})$ $+ \hat{h}_{\mu\nu}\hat{h}_{\rho\sigma}(\partial^{\mu}\hat{h}^{\nu\tau})(\partial^{\rho}\hat{h}^{\sigma}_{\tau}) + \frac{1}{8}\hat{h}^{2}\hat{h}_{\mu\nu}(\partial^{\mu}\partial_{\rho}\hat{h}^{\rho\nu})$ $-\frac{1}{8}\hat{h}^{2}\hat{h}^{\mu\nu}(\partial^{\mu}\partial^{\nu}\hat{h})-\frac{1}{2}\hat{h}_{\mu\nu}\hat{h}_{\rho\sigma}(\partial^{\mu}\hat{h}^{\nu\tau})(\partial_{\tau}\hat{h}^{\rho\sigma})$ $+\hat{h}_{\mu\nu}\hat{h}_{\rho\sigma}(\partial_{\tau}\hat{h}^{\tau\rho})(\partial^{\mu}\hat{h}^{\nu\sigma})+\frac{1}{4}\hat{h}\hat{h}_{\mu\nu}(\partial^{\mu}\hat{h}^{\nu\rho})(\partial_{\rho}\hat{h})$ $- \hat{h}_{\mu\nu}\hat{h}_{\rho\sigma}\hat{h}^{\mu\rho}(\partial^{\nu}\partial^{\sigma}\hat{h}) + \hat{h}_{\mu\nu}\hat{h}_{\rho\sigma}\hat{h}^{\mu\rho}(\partial^{\nu}\partial_{\tau}\hat{h}^{\tau\sigma})$ $-\hat{h}_{\mu\nu}\hat{h}_{\rho\sigma}(\partial^{\mu}\hat{h}^{\rho\tau})(\partial_{\tau}\hat{h}^{\nu\sigma}) + \frac{1}{2}\hat{h}\hat{h}_{\mu\nu}\hat{h}^{\nu\rho}(\partial^{\mu}\partial_{\rho}\hat{h})$ $-\frac{1}{2}\hat{h}\hat{h}_{\mu\nu}\hat{h}^{\nu\rho}(\partial^{\mu}\partial^{\sigma}\hat{h}_{\sigma\rho})+\frac{1}{2}\hat{h}\hat{h}_{\mu\nu}(\partial^{\mu}\hat{h}_{\rho\sigma})(\partial^{\rho}\hat{h}^{\nu\sigma})$ $-\hat{h}_{\mu\nu}\hat{h}_{\rho\sigma}(\partial^{\mu}\hat{h}^{\rho\tau})(\partial^{\sigma}\hat{h}^{\nu}_{\tau}) - \hat{h}_{\mu\nu}\hat{h}^{\nu\rho}\hat{h}_{\sigma\tau}(\partial^{\mu}\partial_{\rho}\hat{h}^{\sigma\tau})$ $-\frac{1}{2}\hat{h}_{\mu\nu}\hat{h}^{\nu\rho}(\partial^{\mu}\hat{h}_{\sigma\tau})(\partial_{\rho}\hat{h}^{\sigma\tau})+\hat{h}\hat{h}_{\mu\nu}\hat{h}^{\nu\rho}(\Box\hat{h}_{\rho}^{\mu})$ $+\frac{1}{8} [\hat{h}\hat{h}] \hat{h}_{\mu\nu}(\Box \hat{h}^{\mu\nu}) - \frac{1}{4} \hat{h}_{\mu\nu} \hat{h}_{\rho\sigma}(\partial^{\tau} \hat{h}^{\mu\nu})(\partial_{\tau} \hat{h}^{\rho\sigma})$ $-\frac{1}{16}\hat{h}^{2}\hat{h}_{\mu\nu}(\Box\hat{h}^{\mu\nu}) + \frac{1}{8}\hat{h}\hat{h}_{\mu\nu}(\partial^{\sigma}\hat{h}^{\mu\nu})(\partial_{\sigma}\hat{h})$ $-\frac{1}{2}\hat{h}_{\mu\nu}\hat{h}_{\rho\sigma}\hat{h}^{\mu\rho}(\Box\hat{h}^{\nu\sigma})-\frac{1}{2}\hat{h}_{\mu\nu}\hat{h}^{\nu\rho}(\partial^{\mu}\hat{h}_{\rho\sigma})(\partial^{\sigma}\hat{h})$ $+\frac{3}{2}\hat{h}\hat{h}_{\mu\nu}(\partial_{\rho}\hat{h}^{\mu\sigma})(\partial^{\rho}\hat{h}^{\nu}_{\sigma})+\frac{1}{48}\hat{h}^{3}(\Box\hat{h})$ $+\frac{1}{4}\hat{h}\hat{h}_{\mu\nu}(\partial^{\rho}\hat{h}_{\rho\sigma})(\partial^{\sigma}\hat{h}^{\mu\nu})+\frac{1}{4}\hat{h}[\![\hat{h}\hat{h}]\!](\partial^{\mu}\partial^{\nu}\hat{h}_{\mu\nu})$ $-\frac{1}{8}\hat{h}\llbracket\hat{h}\hat{h}\rrbracket(\Box\hat{h})$. $\overline{\mathcal{L}}_{B:hhhh} = \frac{1}{2} [\![\hat{h}\hat{h}']\!]^2 - \frac{1}{2} \hat{h} [\![\hat{h}']\!] [\![\hat{h}\hat{h}']\!] - \frac{1}{2} [\![\hat{h}\hat{h}'\hat{h}\hat{h}']\!]$ $+\frac{1}{2}\hat{h}[[\hat{h}\hat{h}'\hat{h}']]+[[\hat{h}']][[\hat{h}\hat{h}\hat{h}']]-[[\hat{h}\hat{h}\hat{h}'\hat{h}']]$ $+\frac{1}{8}[[\hat{h}\hat{h}]][[\hat{h}'\hat{h}']] - \frac{1}{8}[[\hat{h}\hat{h}]][[\hat{h}']]^2 - \frac{1}{16}\hat{h}^2[[\hat{h}'\hat{h}']]$

 $+\frac{1}{16}\hat{h}^2[[\hat{h}']]^2$,

Cancelling Bad High-Energy Growth Sum Rules & Numerical Checks

KK Decomposition: Randall-Sundrum 1

$$\hat{h}_{\mu\nu}(x,y) = \frac{1}{\sqrt{\pi r_c}} \sum_{n=0}^{+\infty} \hat{h}_{\mu\nu}^{(n)}(x) \, \underline{\psi}_n(\varphi)$$

$$\hat{r}(x) = \frac{1}{\sqrt{\pi r_c}} \,\hat{r}^{(0)}(x) \,\underline{\psi_0}$$

Boundary Condition

$$(\partial_{\varphi}\psi_{n})\big|_{\varphi=0} = (\partial_{\varphi}\psi_{n})\big|_{\varphi=\pm\pi} = 0$$

Sturm-Liouville Equation
$$\partial_{\varphi}\left[\varepsilon^{-4}(\partial_{\varphi}\psi_{n})\right] = -(m_{n}r_{c})^{2}\varepsilon^{-2}\psi_{n}$$

Normalization
$$\frac{1}{\pi}\int_{-\pi}^{+\pi}d\varphi \quad e^{-2kr_{c}|\varphi|}\psi_{m}\psi_{n} = \delta_{m,n}$$

$B \rightarrow A$

Sturm-Liouville Equation

$$\partial_{\varphi} \left[\varepsilon^{-4} (\partial_{\varphi} \psi_n) \right] = -(m_n r_c)^2 \varepsilon^{-2} \psi_n$$

$$\mu_n \equiv m_n r_c$$

$B \rightarrow A$

Sturm-Liouville Equation $\partial_{\varphi} \left[\varepsilon^{-4} (\partial_{\varphi} \psi_n) \right] = -(m_n r_c)^2 \varepsilon^{-2} \psi_n$

$$\mu_n \equiv m_n r_c$$

$$\mu_n^2 a_{mn} \equiv \frac{1}{\pi} \int_{-\pi}^{+\pi} d\varphi \ \varepsilon^{-2} \psi_m \left[\mu_n^2 \psi_n \right]$$

SL Eq.
$$\frac{1}{\pi} \int_{-\pi}^{+\pi} d\varphi \ \varepsilon^{-4} \psi_m \left[-\varepsilon^{+2} \partial_{\varphi} \varepsilon^{-4} (\partial_{\varphi} \psi_n) \right]$$

IBP
$$\frac{1}{\pi} \int_{-\pi}^{+\pi} d\varphi \ \varepsilon^{-4} (\partial_{\varphi} \psi_m) (\partial_{\varphi} \psi_n) \equiv b_{m'n'}$$

$B \rightarrow A$

Sturm-Liouville Equation $\partial_{\varphi} \left[\varepsilon^{-4} (\partial_{\varphi} \psi_n) \right] = -(m_n r_c)^2 \varepsilon^{-2} \psi_n$

$$\mu_n \equiv m_n r_c$$

$$\mu_n^2 a_{mn} \equiv \frac{1}{\pi} \int_{-\pi}^{+\pi} d\varphi \ \varepsilon^{-2} \psi_m \left[\mu_n^2 \psi_n \right]$$

$$\stackrel{\text{SL Eq.}}{=} \frac{1}{\pi} \int_{-\pi}^{+\pi} d\varphi \ \varepsilon^{-4} \psi_m \left[-\varepsilon^{+2} \partial_\varphi \varepsilon^{-4} (\partial_\varphi \psi_n) \right]$$

$$\stackrel{\text{IBP}}{=} \frac{1}{\pi} \int_{-\pi}^{+\pi} d\varphi \ \varepsilon^{-4} (\partial_\varphi \psi_m) (\partial_\varphi \psi_n) \equiv b_{m'n'}$$

$$\prime_{m'n} = \frac{1}{2} \left[\mu_l^2 + \mu_m^2 - \mu_n^2 \right] a_{lmn} \quad b_{k'l'mn} = \frac{1}{6} \left[2\mu_k^2 + 2\mu_l^2 - \mu_m^2 - \mu_n^2 \right] a_{klmn}$$

Jun 4th, 2020

D

D. Foren – FNAL Seminar

67 of 94

Jun 4th, 2020

 $b_{l'}$

D. Foren – FNAL Seminar

Helicity-Zero Elastic Matrix Element

Consider **elastic** = all equal KK numbers

Focus on the **fastest-growing helicity combo***

* before applying sum rules

D. Foren – FNAL Seminar

* before applying sum rules

O(s^5): Must Vanish

$$\overline{\mathcal{M}}_{c}^{(5)} = -\frac{\kappa^{2} a_{nnnn}}{2304 \pi r_{c} m_{n}^{8}} \left[7 + \cos(2\theta)\right] \sin^{2} \theta$$
$$\overline{\mathcal{M}}_{j}^{(5)} = \frac{\kappa^{2} a_{nnj}^{2}}{2304 \pi r_{c} m_{n}^{8}} \left[7 + \cos(2\theta)\right] \sin^{2} \theta$$

$$\overline{\mathcal{M}}^{(5)} = \frac{\kappa^2 \left[7 + \cos(2\theta)\right] \sin^2 \theta}{2304 \, \pi r_c \, m_n^8} \left\{ \sum_{j=0}^{+\infty} a_{nnj}^2 - a_{nnnn} \right\}$$

Jun 4th, 2020

D. Foren – FNAL Seminar

71 of 94
O(s^4): Must Vanish

$$\overline{\mathcal{M}}_{c}^{(4)} = \frac{\kappa^{2} a_{nnnn}}{6912 \,\pi r_{c} \,m_{n}^{6}} \left[63 - 196 \cos(2\theta) + 5 \cos(4\theta) \right]$$

$$\overline{\mathcal{M}}_{j}^{(4)} = -\frac{\kappa^{2} \,a_{nnj}^{2}}{9216 \,\pi r_{c} \,m_{n}^{6}} \left\{ \left[7 + \cos(2\theta) \right]^{2} \frac{m_{j}^{2}}{m_{n}^{2}} + 2 \left[9 - 140 \cos(2\theta) + 3 \cos(4\theta) \right] \right\}$$

$$\overline{\mathcal{M}}^{(4)} = \frac{\kappa^2 \left[7 + \cos(2\theta)\right]^2}{9216 \,\pi r_c \, m_n^6} \left\{ \frac{4}{3} a_{nnnn} - \sum_j \frac{m_j^2}{m_n^2} a_{nnj}^2 \right\}$$

Jun 4th, 2020

D. Foren – FNAL Seminar

n.

nzz

O(s^3): Must Vanish

$$\begin{split} \overline{\mathcal{M}}_{c}^{(3)} &= \frac{\kappa^{2} a_{nnnn}}{3456 \pi r_{c} m_{n}^{4}} \left[-185 + 692 \cos(2\theta) + 5 \cos(4\theta) \right] \\ \overline{\mathcal{M}}_{r}^{(3)} &= -\frac{\kappa^{2}}{32 \pi r_{c} m_{n}^{4}} \left[\frac{b_{nnr}^{2}}{(m_{n}r_{c})^{4}} \right] \sin^{2} \theta \\ \overline{\mathcal{M}}_{0}^{(3)} &= \frac{\kappa^{2} a_{nn0}^{2}}{1152 \pi r_{c} m_{n}^{4}} \left[15 - 270 \cos(2\theta) - \cos(4\theta) \right] \\ \overline{\mathcal{M}}_{j>0}^{(3)} &= \frac{\kappa^{2} a_{nnj}^{2}}{2304 \pi r_{c} m_{n}^{4}} \left\{ 5 \left[1 - \cos(2\theta) \right] \frac{m_{j}^{4}}{m_{n}^{4}} + \left[69 + 60 \cos(2\theta) - \cos(4\theta) \right] \frac{m_{j}^{2}}{m_{n}^{2}} \\ &+ 2 \left[13 - 268 \cos(2\theta) - \cos(4\theta) \right] \right\} \\ \overline{\mathcal{M}}^{(3)} &= \frac{5 \kappa^{2} \sin^{2} \theta}{1152 \pi r_{c} m_{n}^{4}} \left\{ \sum_{j} \frac{m_{j}^{4}}{m_{n}^{4}} a_{nnj}^{2} - \frac{16}{15} a_{nnnn} - \frac{4}{5} \left[\frac{9 b_{nnr}^{2}}{(m_{n}r_{c})^{4}} - a_{nn0}^{2} \right] \right\} \end{split}$$

Jun 4th, 2020

D. Foren – FNAL Seminar

n.

 $n_{\mathcal{R}}$

O(s^2): Must Vanish

$$\begin{split} \overline{\mathcal{M}}_{c}^{(2)} &= -\frac{\kappa^{2} a_{nnnn}}{54 \pi r_{c} m_{n}^{2}} [5 + 47 \cos(2\theta)] \\ \overline{\mathcal{M}}_{r}^{(2)} &= \frac{\kappa^{2}}{48 \pi r_{c} m_{n}^{2}} \left[\frac{b_{nnr}^{2}}{(m_{n}r_{c})^{4}} \right] [7 + \cos(2\theta)] \\ \overline{\mathcal{M}}_{0}^{(2)} &= \frac{\kappa^{2} a_{nn0}^{2}}{576 \pi r_{c} m_{n}^{2}} [175 + 624 \cos(2\theta) + \cos(4\theta)] \\ \overline{\mathcal{M}}_{j\geq0}^{(2)} &= \frac{\kappa^{2} a_{nnj}^{2}}{6912 \pi r_{c} m_{n}^{2}} \left\{ 4 [7 + \cos(2\theta)] \left[5 - 2\frac{m_{j}^{2}}{m_{n}^{2}} \right] \frac{m_{j}^{4}}{m_{n}^{4}} - [1291 + 1132 \cos(2\theta) + 9 \cos(4\theta)] \frac{m_{j}^{2}}{m_{n}^{2}} \\ &+ 4 [553 + 1876 \cos(2\theta) + 3 \cos(4\theta)] \right\} \end{split}$$

$$\begin{aligned} 2) &= \frac{\kappa^{2} \left[7 + \cos(2\theta) \right]}{864 \pi r_{c} m_{n}^{2}} \left\{ \sum_{j} \left[\frac{m_{j}^{2}}{m_{n}^{2}} - \frac{5}{2} \right] \frac{m_{j}^{4}}{m_{n}^{4}} a_{nnj}^{2} + \frac{8}{3} a_{nnnn} - 2 \left[\frac{9 b_{nnr}^{2}}{(m_{n}r_{c})^{4}} - a_{nn0}^{2} \right] \right\} \end{aligned}$$

Jun 4th, 2020

 $\overline{\mathcal{M}}^{(i)}$

n.

 $n_{\mathcal{R}}$

Sum Rules: Summary (order-by-order)

The **longitudinal elastic scattering matrix elements** grows like O(E²) iff the following **sum rules** between masses & couplings hold true:

$$\begin{split} \underline{\mathcal{O}(s^5)} &: \qquad \sum_{j=0}^{+\infty} a_{nnj}^2 = a_{nnnn} \\ \underline{\mathcal{O}(s^4)} &: \qquad \sum_{j=0}^{+\infty} \left[\frac{m_j}{m_n}\right]^2 a_{nnj}^2 = \frac{4}{3} a_{nnnn} \\ \underline{\mathcal{O}(s^3)} &: \qquad \sum_{j=0}^{+\infty} \left[\frac{m_j}{m_n}\right]^4 a_{nnj}^2 = \frac{4}{5} \left[9 \frac{b_{nnr}^2}{(m_n r_c)^4} - a_{nn0}^2\right] + \frac{16}{15} a_{nnnn} \\ \underline{\mathcal{O}(s^2)} &: \qquad \sum_{j=0}^{+\infty} \left[\frac{m_j}{m_n}\right]^6 a_{nnj}^2 = 4 \left[9 \frac{b_{nnr}^2}{(m_n r_c)^4} - a_{nn0}^2\right] \end{split}$$

Jun 4th, 2020

D. Foren – FNAL Seminar

Jun 4th, 2020

 $\mathcal{M}^{[N]}$

76 of 94

Elastic 2-to-2 KK Mode Scattering Matrix Elements in RS1 Fastest Energy Growth per Helicity Combination: $(\lambda_1, \lambda_2) \rightarrow (\lambda_3, \lambda_4)$

n z n n all z n

77 of 94

Sum Rules: Summary (order-by-order)

The **longitudinal elastic scattering matrix elements** grows like O(E²) iff the following **sum rules** between masses & couplings hold true:

$$\begin{split} \underline{\mathcal{O}(s^5)} : & \sum_{j=0}^{+\infty} a_{nnj}^2 = a_{nnnn} \quad \text{PROVED} \\ \underline{\mathcal{O}(s^4)} : & \sum_{j=0}^{+\infty} \left[\frac{m_j}{m_n} \right]^2 a_{nnj}^2 = \frac{4}{3} a_{nnnn} \quad \text{PROVED} \\ \underline{\mathcal{O}(s^3)} : & \sum_{j=0}^{+\infty} \left[\frac{m_j}{m_n} \right]^4 a_{nnj}^2 = \frac{4}{5} \left[9 \frac{b_{nnr}^2}{(m_n r_c)^4} - a_{nn0}^2 \right] + \frac{16}{15} a_{nnnn} \\ \underline{\mathcal{O}(s^2)} : & \sum_{j=0}^{+\infty} \left[\frac{m_j}{m_n} \right]^6 a_{nnj}^2 = 4 \left[9 \frac{b_{nnr}^2}{(m_n r_c)^4} - a_{nn0}^2 \right] \end{split}$$

Jun 4th, 2020

D. Foren – FNAL Seminar

Sum Rules: Summary (order-by-order)

The **longitudinal elastic scattering matrix elements** grows like O(E²) iff the following **sum rules** between masses & couplings hold true:

$$\underline{\mathcal{O}(s^5)}: \qquad \sum_{j=0}^{+\infty} a_{nnj}^2 = a_{nnnn} \quad \mathbf{PROVED} \\
\underline{\mathcal{O}(s^4)}: \qquad \sum_{j=0}^{+\infty} \left[\frac{m_j}{m_n}\right]^2 a_{nnj}^2 = \frac{4}{3} a_{nnnn} \quad \mathbf{PROVED} \\
\underline{\mathcal{O}(s^3)}: \qquad \sum_{j=0}^{+\infty} \left[\frac{m_j}{m_n}\right]^4 a_{nnj}^2 = \frac{4}{5} \left[9 \frac{b_{nnr}^2}{(m_n r_c)^4} - a_{nn0}^2\right] + \frac{16}{15} a_{nnnn} \\
\underline{\mathcal{O}(s^2)}: \qquad \sum_{j=0}^{+\infty} \left[\frac{m_j}{m_n}\right]^6 a_{nnj}^2 = 4 \left[9 \frac{b_{nnr}^2}{(m_n r_c)^4} - a_{nn0}^2\right]$$

Reorganize These Last 2

Jun 4th, 2020

D. Foren – FNAL Seminar

Sum Rules: Summary (alternate form)

The **longitudinal elastic scattering matrix elements** grows like O(E²) iff the following **sum rules** between masses & couplings hold true:

 $\underline{\mathcal{O}(s^5)}: \qquad \sum a_{nnj}^2 = a_{nnnn} \quad \mathbf{PROVED}$ $\underline{\mathcal{O}(s^4)}: \quad \sum_{i=0}^{+\infty} \left[\frac{m_j}{m_n}\right]^2 a_{nnj}^2 = \frac{4}{3} a_{nnnn} \quad \text{PROVED}$ $\underline{\mathcal{O}(s^2)} \leftrightarrow \underline{\mathcal{O}(s^3)}: \quad \sum_{i=0}^{+\infty} \left[\left(\frac{m_j}{m_n} \right)^2 - 5 \right] \left[\frac{m_j}{m_n} \right]^4 a_{nnj}^2 = -\frac{16}{3} a_{nnnn} \quad \text{PROVED}$ $\underline{\mathcal{O}(s^2)}: \qquad \sum_{j=0}^{+\infty} \left[\frac{m_j}{m_n}\right]^6 a_{nnj}^2 = 4 \left[9 \frac{b_{nnr}^2}{(m_n r_c)^4} - a_{nn0}^2\right] \qquad \text{This is the only} \\ \text{rule left without} \\ \text{an analytic proof} \end{cases}$ an analytic proof.

Jun 4th, 2020

O(s): Actual Leading Energy Growth

$$\begin{split} \overline{\mathcal{M}_{c}^{(1)}} &= \frac{\kappa^{2} a_{nnnn}}{1728 \pi r_{c}} \left[1505 + 3108 \cos(2\theta) - 5\cos(4\theta) \right] \\ \overline{\mathcal{M}_{r}^{(1)}} &= -\frac{\kappa^{2}}{24 \pi r_{c}} \left[\frac{b_{nnr}^{2}}{(m_{n}r_{c})^{4}} \right] \left[9 + 7\cos(2\theta) \right] \\ \overline{\mathcal{M}_{0}^{(1)}} &= \frac{\kappa^{2} a_{nn0}^{2} \csc^{2} \theta}{2304 \pi r_{c}} \left[748 + 427\cos(2\theta) + 1132\cos(4\theta) - 3\cos(6\theta) \right] \\ \overline{\mathcal{M}_{j>0}^{(1)}} &= \frac{\kappa^{2} a_{nnj}^{2} \csc^{2} \theta}{6912 \pi r_{c}} \left\{ 3 \left[7 + \cos(2\theta) \right]^{2} \frac{m_{j}^{8}}{m_{n}^{8}} - 4 \left[241 + 148\cos(2\theta) - 5\cos(4\theta) \right] \frac{m_{j}^{6}}{m_{n}^{6}} \\ &+ 4 \left[787 + 604\cos(2\theta) - 47\cos(4\theta) \right] \frac{m_{j}^{4}}{m_{n}^{4}} - \left[3854 + 5267\cos(2\theta) + 98\cos(4\theta) - 3\cos(6\theta) \right] \frac{m_{j}^{2}}{m_{n}^{2}} \\ &+ \left[2156 + 1313\cos(2\theta) + 3452\cos(4\theta) - 9\cos(6\theta) \right] \right\} \\ \overline{\mathcal{I}}^{(1)} &= \frac{\kappa^{2} \left[7 + \cos(2\theta) \right]^{2} \csc^{2} \theta}{2304 \pi r_{c}} \left\{ \sum_{j} \frac{m_{j}^{8}}{m_{n}^{8}} a_{nnj}^{2} + \frac{28}{15}a_{nnnn} - \frac{48}{5} \left[\frac{9 b_{nnr}^{2}}{(m_{n}r_{c})^{4}} - a_{nn0}^{2} \right] \right\} \end{split}$$

Jun 4th, 2020

 \mathcal{N}

s n

[®]n

 $n_{\mathcal{X}}$

Jun 4th, 2020

 $\mathcal{M}^{[N]}$

 \equiv

82 of 94

Strong Coupling Scale Is it consistent with expectations?

Strong Coupling Scale

Jun 4th, 2020

Finite Truncation at Low Energy How many states should I include?

Truncation at Low Energies: $E = 10 m_1$

Jun 4th, 2020

D. Foren – FNAL Seminar

X

Truncation at Low Energies: $E = 10 m_1$

D. Foren – FNAL Seminar

Truncation at Low Energies: $E = 100 m_1$

Jun 4th, 2020

D. Foren – FNAL Seminar

88 of 94

Late 2018

Jun 4th, 2020

The Future Bulk & Brane Matter; Other Extensions

Future Work: Bulk & Brane Matter

Also investigating: bulk & brane matter of other spins, dark matter applications

Future Work: Radion Stabilization

- 4D Graviton: measures fluctuations in the 4D directions.
- Radion: measures fluctuations in the separation between branes.

TeV Brane ($\varphi = \pi$) Attractive Force (Casimir Effect) Planck Brane ($\varphi = 0$)

The radion requires *stabilization* (or 5th dimension will collapse.)

- (Adding a radion mass by hand = $\mathcal{O}(s^2)$ divergence.)
- We're currently working on implementing a fully stabilized theory.

Conclusion

... and a few other applications which I hope to share with you soon!

Interested in learning more?

We have several papers available on the arXiv:

• [arXiv:1906.11098] ; [arXiv:1910.06159] ; [arXiv: 2002.12458]

Thank you for your time and attention!